Lösungen:
Sei
k
. Dann ist:
| 0 . 0! + ... + k . k! | = | (k + 1)! - 1 | |
| 0 . 0! + ... + k . k! + (k + 1)(k + 1)! | = | (k + 1)! - 1 + (k + 1)(k + 1)! | |
| 0 . 0! + ... + k . k! + (k + 1)(k + 1)! | = | (k + 1)!(k + 2) - 1 | |
| 0 . 0! + ... + k . k! + (k + 1)(k + 1)! | = | (k + 2)! - 1 |
![]() |
| 1 + ... + k | = | ![]() |
|
| 1 + ... + k + (k + 1) | = | + (k + 1) = ![]() |
| f (x + 1) = f (x) + (x + 1)2 und f (0) = 0. |
Es ist also
f (x) = a1x + a2x2 + a3x3. Also ist
| f (x + 1) | = | a1(x + 1) + a2(x + 1)2 + a3(x + 1)3 | |
| = | (a1 + a2 + a3) + (a1 +2a2 +3a3)x + (a2 +3a3)x2 + a3x3 |
| f (x + 1) | = | f (x) + (x + 1)2 | |
| = | a1x + a2x2 + a3x3 + x2 + 2x + 1 | ||
| = | 1 + (a1 +2)x + (a2 +1)x2 + a3x3 |
|
|
Dies ergibt
a3 = |
Wenn es daher ein Polynom mit der gewünschten Eigenschaft gibt, so muss es f
sein.
Tatsächlich hat f die verlangte Eigenschaft.
Denn es ist
| f (x + 1) - f (x) | = | ||
| = | x2 +2x + 1 = (x + 1)2 |
| f (x + 1) - f (x) - (x + 1)3 | = | 0 |
| a1 + a2 + a3 + a4 | = | 1 | |
| 2a2 +3a3 +4a4 | = | 3 | |
| 3a3 +6a4 | = | 3 | |
| 4a4 | = | 1 |
| f (x) = a1x1 + a2x2 + a3x3 + a4x4 + a5x5 |
| a1(x + 1) + a2(x + 1)2 + a3(x + 1)3 + a4(x + 1)4 + a5(x + 1)5 | = | ||
| ax + a2x2 + a3x3 + a4x4 + a5x5 + x4 +4x3 +6x2 + 4x + 1 |
| a1 + a2 + a3 + a4 + a5 | = | 1 | |
| 2a2 +3a3 +4a4 +5a5 | = | 4 | |
| 3a3 +6a4 +10a5 | = | 6 | |
| 4a4 +10a5 | = | 4 | |
| 5a5 | = | 1 |
| f (x) = |